Par : Christian Lebière
Résumé :
Cognitive architectures are computational implementations of unified theories of cognition. Being able to represent human cognition in computational form enables a wide range of applications when humans and machines interact. Using cognitive models to represent common ground between deep learners and human users enables adaptive explanations. Cognitive models representing the behavior of cyber attackers can be used to optimize cyber defenses including techniques such as deceptive signaling. Cognitive models of human-automation interaction can improve robustness of human-machine teams by predicting disruptions to measures of trust under various adversarial situations. Finally, the consensus of 50 years of research in cognitive architectures can be captured in the form of a Common Model of Cognition that can provide a guide for neuroscience, artificial intelligence and robotics.
Bio :
Christian Lebière is a Research Faculty member in the Psychology Department at Carnegie Mellon University. His main research interests are cognitive architectures and their applications to psychology, artificial intelligence, human-computer interaction, decision-making, intelligent agents, network science, cognitive robotics and neuromorphic engineering.
Références:
Cranford, E. A., Gonzalez, C., Aggarwal, P., Tambe, M., Cooney, S., & Lebiere, C. (2021). Towards a cognitive theory of cyber deception. Cognitive Science, 45(7), e13013.
Cranford, E., Gonzalez, C., Aggarwal, P., Cooney, S., Tambe, M., & Lebiere, C. (2020). Adaptive cyber deception: Cognitively informed signaling for cyber defense.
Lebiere, C., Blaha, L. M., Fallon, C. K., & Jefferson, B. (2021). Adaptive cognitive mechanisms to maintain calibrated trust and reliance in automation. Frontiers in Robotics and AI, 8, 652776.
Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Magazine, 38(4), 13-26.
Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-Taylor, M., Staszewski, J., & Anderson, J. R. (2013). A functional model of sensemaking in a neurocognitive architecture. Computational Intelligence and Neuroscience, 2013.
Jeudi 20 octobre, 10 h 30.
Lien zoom : https://uqam.zoom.us/j/88481835073
IMPORTANT : connectez-vous au moins 10 à 15 minutes à l’avance, et donnez votre nom complet pour nous faciliter la tâche de vous admettre au séminaire.
Lors de la période de question, nous vous invitons à ouvrir votre caméra et à poser vos questions directement.